Abstract

The conductance through two quantum dots connected in a series is examined below the Kondo temperature as a function of the gate voltage attached to the dots. The ratio of the tunneling coupling between two dots to the level broadening characterizes the transport properties. When the ratio is less than unity, each dot accommodates one electron and forms the Kondo resonant state with an external lead at a sufficiently low gate voltage. In the valence fluctuating regime, the number of electrons in the dots decreases from two to zero whereas the conductance is suppressed. The corresponding range of the gate voltage is nearly the level broadening. When the ratio is larger than unity, the Kondo resonances are split into the bonding and antibonding peaks. The valence fluctuating regime is extended over the tunneling coupling between the two dots.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.