Abstract

The structures of three linear-chain platinum(II) diimine complexes have been determined [Pt···Pt, Å]: Pt(bpm)Cl2·0.5(nmp) (3) [3.411(1), 3.371(1)], Pt(phen)(CN)2 (6) [3.338(1), 3.332(1)], and Pt(bpy)(NCS)2 (7) [3.299(2)] (bpm = 2,2‘-bipyrimidine, phen = 1,10-phenanthroline, bpy = 2,2‘-bipyridine, nmp = 1-methyl-2-pyrrolidinone). The Pt···Pt distances in these and in seven related compounds range from 3.24 to 3.49 Å. While we find evidence of interligand interactions influencing these structures, the Pt···Pt bonds are the most important of the stacking forces. The metal−metal distances are generally consistent with an electronic structural model in which σ-donor/π-acceptor ligands strengthen Pt···Pt bonding interactions (for example, the Pt···Pt distances in 3 are 0.04 and 0.08 Å shorter than in the bpy analogue). We have also found that the yellow form of Pt(dmbpy)(NCO)2 (1b) (4,4‘-dimethyl-2,2‘-bipyridine) has a columnar structure; however, in contrast to the linear-chain form (1), which is orange, the Pt atoms are well separated (>4.9 Å). Interestingly, the yellow form is 7% denser than the orange form; this result is consistent with the concept that directed intermolecular interactions give rise to lower density polymorphs. Crystal data: (3) monoclinic, C2/m (No. 12), a = 12.668(4) Å, b = 15.618(6) Å, c = 6.704(3) Å, β = 93.43(3)°, Z = 4; (6) orthorhombic, Pbca (No. 61), a = 38.731(13) Å, b = 18.569(3) Å, c = 6.628(1) Å, Z = 16; (7) orthorhombic, Pbcm (No. 57), a = 10.349(3) Å, b = 19.927(5) Å, c = 6.572(3) Å, Z = 4; (1b) monoclinic, C2/c (No. 15), a = 17.313(4) Å, b = 12.263(3) Å, c = 14.291(4) Å, β = 114.00(2)°, Z = 8.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.