Abstract
Part I of this series showed that Herzberg-Teller vibronic coupling manifests itself in linear spectroscopy through the breakdown of the mirror image symmetry between the absorption and emission spectra, whereby a nuclear exponential function was used to represent the molecular electronic transition dipole moment. This part tests the applicability of the framework developed in Paper I to absorption-emission asymmetry in nonlinear signals such as hole-burned and fluorescence line narrowed spectra. Model calculations of nonlinear absorption and emission spectra showing asymmetry is provided. Hole-burning and fluorescence line narrowing signals are to exemplify nonlinear absorption and emission spectra so as to reveal the anticipated asymmetry in 4-wave mixing experiments, and probe the consequent zero-phonon hole and the phonon-sideband hole. These calculations prove to be efficient and fast, exhibiting remarkable numerical stability. The observation of richer phonon-side band (PSB) in linear spectra, phono-side band hole (PSBH) in Hole-burning and fluorescence line narrowing signals, and emergence of new quantum beats over longer time scale (despite the dissipative medium) under the non-Condon regime are linked to the long quantum coherence phenomenon and stimulated photon peak shift in photosynthetic systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.