Abstract

The line ratios R and G of the three main lines of He-like ions (triplet: resonance, intercombination, forbidden lines) are calculated for CV, NVI, OVII, NeIX, MgXI, and SiXIII. These ratios can be used to derive electron density n_e and temperature T_e of hot late-type stellar coronae and O, B stars from high-resolution spectra obtained with Chandra (LETGS, HETGS) and XMM-Newton (RGS). All excitation and radiative processes between the levels and the effect of upper-level cascades from collisional electronic excitation and from dielectronic and radiative recombination have been considered. When possible the best experimental values for radiative transition probabilities are used. For the higher-Z ions (i.e. NeIX, MgXI, SiXIII) possible contributions from blended dielectronic satellite lines to each line of the triplets were included in the calculations of the line ratios R and G for four specific spectral resolutions: RGS, LETGS, HETGS-MEG, HETGS-HEG. The influence of an external stellar radiation field on the coupling of the 2^3S (upper level of the forbidden line) and 2^3P levels (upper levels of the intercombination lines) is taken into account. This process is mainly important for the lower-Z ions (i.e. CV, NVI, OVII) at moderate radiation temperature (T_rad). These improved calculations were done for plasmas in collisional ionization equilibrium, but will be later extended to photo-ionized plasmas and to transient ionization plasmas. The values for R and G are given in extensive tables, for a large range of parameters, which could be used directly to compare to the observations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.