Abstract

We investigate the Lindblad equation in the context of boundary-driven magnetization transport in spin-1/2 chains. Our central question is whether the nonequilibrium steady state of the open system, including its buildup in time, can be described on the basis of the dynamics in the closed system. To this end, we rely on a previous study [Heitmann , ], in which a description in terms of spatio-temporal correlation functions was suggested in the case of weak driving and small system-bath coupling. Because this work focused on integrable systems and periodic boundary conditions, we here extend the analysis in three directions: (1) We consider nonintegrable systems, (2) we take into account open boundary conditions and other bath-coupling geometries, and (3) we provide a comparison to time-evolving block decimation. While we find that nonintegrability plays a minor role, the choice of the specific boundary conditions can be crucial due to potentially nondecaying edge modes. Our large-scale numerical simulations suggest that a description based on closed-system correlation functions is a useful alternative to already existing state-of-the-art approaches. Published by the American Physical Society 2024

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.