Abstract

BackgroundKeloids are benign fibroproliferative skin tumors. Long non-coding RNAs (lncRNAs) have been implicated in the pathogenesis of keloid formation. In this paper, we explored the precise actions of LINC01116 in keloid formation. MethodsThe targeted relationship between microRNA (miR)-3141 and LINC01116 or transforming growth factor β1 (TGF-β1) was verified by dual-luciferase reporter, RNA immunoprecipitation (RIP), and RNA pull-down assays. The expression levels of LINC01116, miR-3141, TGF-β1, and SMAD family member 3 (SMAD3) were gauged by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. Cell proliferation, migration, and apoptosis were assessed by the Cell Counting Kit-8 (CCK-8) assay, wound-healing assay, and flow cytometry, respectively. Animal studies were used to assess the role of LINC01116 in the subcutaneous keloid growth in vivo. ResultsOur data showed that LINC01116 targeted miR-3141 by directly binding to miR-3141. LINC01116 was up-regulated and miR-3141 was down-regulated in human keloid tissues and fibroblasts. LINC01116 knockdown or miR-3141 overexpression suppressed keloid fibroblast proliferation, migration, and promoted cell apoptosis. Moreover, miR-3141 was a downstream mediator of LINC01116 function. MiR-3141 regulated the TGF-β1/SMAD3 signaling by directly targeting TGF-β1. Furthermore, TGF-β1 was identified as a direct and functional target of miR-3141. LINC01116 regulated the TGF-β1/SMAD3 signaling through miR-3141. Additionally, LINC01116 knockdown diminished the subcutaneous keloid growth in vivo. ConclusionOur findings demonstrated a novel mechanism, the miR-3141/TGF-β1/SMAD3 regulatory pathway, at least partially for the oncogenic role of LINC01116 in keloid formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.