Abstract

Limitations on the performance of the overlap-correlator method of forming a passive synthetic aperture are derived. The technique uses the overlap of the array in sequential positions to estimate a series of phase correction factors that compensate for the motion of the array over time. It is of primary interest to optimize this overlap with respect to the effects of random noise. By minimizing the variance of the estimates of the set of phase correction factors, it is found that the optimal overlap is one-half the length of the physical array. Using this optimal overlap, the bounds on the usable spatial response are then determined as a function of signal-to-noise ratio and the number of hydrophones in the physical array. The ability of the overlap-correlator algorithm to synthesize a coherent aperture is investigated for the case of multiple sources in the absence of noise.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.