Abstract
The aim was to assess the ability of bicarbonate-extractable P (Olsen P) to estimate total plant-available P (TPAP) in reclaimed marsh soils (Aeric Endoaquepts) which differed widely in P buffering capacity (PBC). Total plant-available P was estimated as the cumulative P uptake for a final concentration of 0.02 mg P/L in the soil solution which is the typical P requirement for field crops. The Olsen P estimated for that concentration was adopted as the critical level for crop production. We found that TPAP was better predicted by anion exchange resin-extractable P (AER-P) (65% of variance accounted for) than by Olsen P, probably because the effectiveness of the AER depends on the soil P buffering capacity, a factor that greatly influences the availability of P to plants. The critical Olsen P level was found to depend on those soil properties affecting the relationship between sorbed P and P in soil solution, viz. the P buffering capacity of soil, the Na/Ca mole ratio in the 1:1 soil:water extract, which explained 63 and 84% of the variance in the critical level, respectively, and the affinity of the sorbing surfaces for P. These properties must be taken into account when using Olsen P as the P index for fertilizer management.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.