Abstract

We show that almost any one-dimensional projection of a suitably scaled random walk on a hypercube, inscribed in a hypersphere, converges weakly to an Ornstein–Uhlenbeck process as the dimension of the sphere tends to infinity. We also observe that the same result holds when the random walk is replaced with spherical Brownian motion. This latter result can be viewed as a “functional” generalisation of Poincaré’s observation for projections of uniform measure on high dimensional spheres; the former result is an analogous generalisation of the Bernoulli–Laplace central limit theorem. Given the relation of these two classic results to the central limit theorem for convex bodies, the modest results provided here would appear to motivate a functional generalisation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.