Abstract

In this paper, we consider the bifurcation problem of limit cycles for a class of piecewise smooth cubic systems separated by the straight line [Formula: see text]. Using the first order Melnikov function, we prove that at least [Formula: see text] limit cycles can bifurcate from an isochronous cubic center at the origin under perturbations of piecewise polynomials of degree [Formula: see text]. Further, the maximum number of limit cycles bifurcating from the center of the unperturbed system is at least [Formula: see text] if the origin is the unique singular point under perturbations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.