Abstract

Studies on the anticonvulsant efficacy of the major antiepileptic drug phenytoin in kindled rats have often reported inconsistent effects. It has been proposed that technical and genetic factors or poor and variable absorption of phenytoin after i.p. or oral administration may be involved in the lack of consistent anticonvulsant activity of phenytoin in this model of temporal lobe epilepsy. We examined if kindling itself changes the anticonvulsant efficacy of phenytoin by testing this drug before and after amygdala kindling in male and female Sprague-Dawley rats. To exclude the possible bias of poor and variable absorption, blood was sampled in all experiments for drug analysis in plasma. The threshold for induction of focal seizures (afterdischarge threshold; ADT) was used for determining phenytoin's anticonvulsant activity. Before kindling, phenytoin, 75 mg/kg i.p., markedly increased ADT in both genders, although the effect was more pronounced in males. Following kindling, the anticonvulsant activity obtained with phenytoin, 75 mg/kg, before kindling was totally lost, and female rats even exhibited a proconvulsant effect upon administration of this dose, indicating that kindling had dramatically altered the anticonvulsant efficacy of phenytoin. Plasma levels of phenytoin were comparable before and after kindling, and were within or near to the 'therapeutic range' known from epileptic patients. When the dose of phenytoin was reduced to 50 or 25 mg/kg i.p., significant anticonvulsant effects on ADT were obtained. When phenytoin, 50 mg/kg, was administered i.p. or i.v. in the same group of fully kindled rats, both anticonvulsant activity and plasma drug levels were comparable with both routes, indicating that the i.p. route is suited for such studies. The data indicate that kindling alters the dose-response of phenytoin in that a high anticonvulsant dose becomes ineffective or proconvulsant after kindling, possibly by an increased sensitivity of the kindled brain to proconvulsant effects of phenytoin which normally only occur at much higher doses. If similar alterations evolve in humans during development of chronic epilepsy, this may be involved in the mechanisms leading to intractability of temporal lobe epilepsy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.