Abstract
We consider the standard linear multiple regression model in which the parameter of interest is the ratio of two regression coefficients. Our setup includes a broad range of applications. We show that the 1− α confidence interval for the interest parameter based on the profile, conditional profile, modified profile or adjusted profile likelihood can potentially become the entire real line, while appropriately chosen integrated likelihoods do not suffer from this drawback. We further explore the asymptotic length of confidence intervals in order to compare integrated likelihood-based proposals. The analysis is facilitated by an orthogonal parameterization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annals of the Institute of Statistical Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.