Abstract
Focused on interpreting data as statistical evidence, the evidential paradigm uses likelihood ratios to measure the strength of statistical evidence. Under this paradigm, re-examination of accumulating evidence is encouraged because (i) the likelihood ratio, unlike a p-value, is unaffected by the number of examinations and (ii) the probability of observing strong misleading evidence is naturally low, even for study designs that re-examine the data with each new observation. Further, the controllable probabilities of observing misleading and weak evidence provide assurance that the study design is reliable without affecting the strength of statistical evidence in the data. This paper illustrates the ideas and methods associated with using likelihood ratios to measure statistical evidence. It contains a comprehensive introduction to the evidential paradigm, including an overview of how to quantify the probability of observing misleading evidence for various study designs. The University Group Diabetes Program (UGDP), a classic and still controversial multi-centred clinical trial, is used as an illustrative example. Some of the original UGDP results, and subsequent re-analyses, are presented for comparison purposes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.