Abstract

The nonuniform ion/charge distribution and slow Li-ion diffusion at the Li metal/electrolyte interface lead to uncontrollable dendrites growth and inferior cycling stability. Herein, a simple mechanical rolling method is introduced to construct a mixed conductive protective layer composed of LiI and Cu on the Li metal surface through the replacement reaction between CuI nanoflake arrays and metallic Li. LiI can promote Li+ transportation across the interface, achieving homogeneous Li+ flux and suppressing the growth of Li dendrite, while the homogeneously dispersed Cu nanoparticles can offer abundant nucleation sites for Li deposition, resulting in a remarkably homogenized charge distribution. As expected, Li metal with the LiI/Cu protection layer (LiI/Cu@Li) exhibits a significantly prolonged lifespan over 350 h with slight polarization at a deposition capacity of 3 mAh cm-2 in the carbonate electrolyte. Besides, when matched with high mass loading LiFePO4 cathodes (20 mg cm-2), the LiI/Cu@Li anodes exhibit much improved cycle stability and rate performance. Highly scalable preparation processes as well as the impressive electrochemical performances in half cells and full cells indicate the potential application of the LiI/Cu@Li anode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.