Abstract

Production of lignolytic enzymes by the mushroom fungus Stereum ostrea in liquid medium under conditions of vegetative growth was examined for 10 days in comparison to the reference culture Phanerochaete chrysosporium. Though growth and secretion of extracellular protein by S. ostrea were comparable to those of P. chrysosporium, yields of laccase enzyme by S. ostrea were higher than laccase titres of P. chrysosporium by more than 2 folds on the peak production time interval (IVth day of incubation). S. ostrea yielded titres of 25 units of laccase/ml as against 8.9 units of laccase/ml on the IVth day of incubation. Stereum ostrea also exhibited activities of other lignolytic enzymes, lignin peroxidase (LiP) and manganese peroxidase (MnP), higher than the reference culture. Growth of S. ostrea on the medium in the presence of Remazol orange 16 resulted in the decolourisation of dye, confirming the presence of lignolytic enzymes. S. ostrea appears to be a promising culture with complete lignolytic system.

Highlights

  • Lignin is the second most abundant aromatic polymer in nature with three-dimensional structure composed of phenyl propanoid units linked through several carbon-carbon and ether bonds [1, 2]

  • Peroxidases are dominant in lignolytic system in respect of P. chrysosporium, where laccase is a major component in lignolytic system of Ganoderma adspersum [6, 12, 13]

  • The majority of earlier studies have been on lignin-degrading enzymes of organisms, P. chrysosporium, Pleurotus ostreatus and Trametes versicolor, there has been a growing interest in studying lignolytic enzymes of wider array of white-rot fungi from the standpoint of comparative biology and with expectation of finding better lignin degrading system

Read more

Summary

Introduction

Lignin is the second most abundant aromatic polymer in nature with three-dimensional structure composed of phenyl propanoid units linked through several carbon-carbon and ether bonds [1, 2]. Activities of lignolytic enzymes appear only in the culture medium after attainment of peak growth with exhaustion of nutrients— C, N, and S in respect of P. chrysosporium and T. versicolor [7]. The majority of earlier studies have been on lignin-degrading enzymes of organisms, P. chrysosporium, Pleurotus ostreatus and Trametes versicolor, there has been a growing interest in studying lignolytic enzymes of wider array of white-rot fungi from the standpoint of comparative biology and with expectation of finding better lignin degrading system. MnP activity was expressed in IU, where one unit of MnP was defined as the amount of enzyme that oxidized one micromole of phenol red per min

Materials and Methods
Results and Discussion
IV VI VIII X
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.