Abstract

Lignin is a complex natural polymer and it is one of the main constituent of the lignocellulosic biomass. Moreover, it is a bio-renewable material and it is available in large amounts as by-product from the forest industry. Lignin-based hydrogels with high swelling capabilities were prepared by crosslinking poly (methyl vinyl ether co-maleic acid) and different technical lignins in ammonium and sodium hydroxide solutions. The produced hydrogels showed a wide range of water absorption capacities varying from 13 to 130 g of water per 1 g of sample. It was observed that the higher the water uptake the poorer mechanical performance, as evaluated in terms of storage and loss modulus (G′ and G″, respectively) of the materials. Methylene blue (MB) was used as a model dye to evaluate the adsorption and release capabilities of the lignin hydrogels. Results suggested that these hydrogels showed a high MB removal efficiency, which ranged from 12 to 96%. On the contrary, the percentages of MB released depended on the negative surface charge of the hydrogels, showing values which ranged from 0.06 to 0.35%. Thus, these materials have potential to be used as adsorbents for the removal of organic dyes from waste water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.