Abstract

Although bio-based sensing materials have a wide range of applications in the field of pressure detection, they still need to improve their sensitivity, detection limit and hysteresis. This paper studied the relationship between the 3D pore structure and sensing performance under dynamics. Using Balsa wood as the substrate, CWA/TPU aerogel and its sensor were prepared with lightweight, compressibility, highly sensitivity, wide-detection, and low-hysteresis. Meanwhile, the brittleness problem of the carbonized aerogel was solved by uniformly attaching TPU to the aerogel interface. In this paper, the 3D structure of CWA/TPU aerogel during compression was reconstructed by Micro-XCT technology, and the results show that the sensitivity of the bio-based carbonized material is directly proportional to the porosity and inversely proportional to the aspect ratio. This CWA/TPU aerogel pressure sensor has a high sensitivity of 76.18 kPa−1 in a wide detection limit of 0.6 Pa–100 kPa, 90 % supercompression strain, ±7.4 % low hysteresis and outstanding stability over 10,000 cycles. And the sensor can detect different ranges of pressure strains and has great potential for future applications in physiological signal monitoring, action recognition, and sports training.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.