Abstract
The Internet of Drones (IoD) means the cooperative collection and transmission of data by multiple drones in a cluster or decentralized way of working to decrease the energy consumption of mobile devices, increase overall performance, and reduce the cost of building infrastructure. It is widely applied in various fields, including environmental scouting and monitoring, emergency assistance and logistics transportation, etc. Recently, many related authentication schemes were proposed for IoD. Due to the limitation that the drones use lightweight components for development, these authentication schemes mostly use lightweight components for development. However, many authentication schemes cannot overcome security issues such as providing user privacy protection and resisting drone capture attacks. This study discusses these security issues of related schemes, and develops an authentication scheme for IoD by using Physically Unclonable Functions (PUF). Due to its own microscopic characteristics, the PUF can generate unpredictable and duplicate information, which can be regarded as a device fingerprint and is suitable for device authentication. Additionally, this study utilizes the commutative and invertible properties of BS-PUF to develop the key exchange of the proposed scheme and to protect user privacy. This proposed scheme overcomes the previous problems in security, has more security features, and maintains lightweight computational costs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.