Abstract

Reliable detection of high-concentration hydrogen (H2) leakage in sharp-vibration environments is highly desired such as in the application of space rockets. As hydrogen has to be detected simultaneously in a wide concentration range and at high concentrations (e.g., 100 v/v%) with outstanding linearity in response/concentration, lightweight features, and excellent tolerance against saturation and vibration, it remains challenging. Here, a flexible and high-concentration H2 sensing has been developed through "dipping-drying" a three-dimensional (3D) porous polyurethane (PU) foam integrated with graphene oxide (GO-PU). Multilayered honeycomb-structured graphene oxide appears to be tightly adhered to faveolate PU. Benefiting from the numerous adsorption sites of the "dual honeycomb" structure and abundant surface functional groups of GO, the GO-PU foam exhibits distinguished response and linearity toward 2-100 v/v% H2 and shows excellent lightweight, tailorability, and flexibility. Remarkably, the foam possesses outstanding sensing stability against 0-180° bending and low 0-20% straining, along with outstanding H2 sensing performance even after being pressed by a weight of 200 g, immersed in water, and frozen in a refrigerator at -10.8 °C. Practically, the GO-PU foam has potential for high-concentration H2 leakage detection, and our synthetic strategy may provide a way to avoid adsorbing saturation in other flexible gas sensing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.