Abstract

Radio frequency interference (RFI) poses challenges in the analysis of synthetic aperture radar (SAR) images. Existing RFI suppression systems rely on prior knowledge of the presence of RFI. This paper proposes a lightweight neural network-based algorithm for detecting and segmenting RFI (LDNet) in the time-frequency domain. The network accurately delineates RFI pixel regions in time-frequency spectrograms. To mitigate the impact on the operational speed of the entire RFI suppression system, lightweight modules and pruning operations are introduced. Compared to threshold-based RFI detection algorithms, deep learning-based segmentation networks, and AC-UNet specifically designed for RFI detection, LDNet achieves improvements in mean intersection over union (MIoU) by 24.56%, 13.29%, and 7.54%, respectively.Furthermore, LDNet reduces model size by 99.03% and inference latency by 24.53% compared to AC-UNet.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.