Abstract
Melanophores in the isolated tail from the amphibian larvae Xenopus laevis, Hyla japonicus, Rana pirica, and Hynobius retardatus aggregated melanin granules in response to light and dispersed them when placed in darkness. The spectral characteristics for the melanin-aggregation response were examined by irradiating the Xenopus tail-fin locally (diameter, 2.1 mm) with monochromatic light (380–1,020 nm). The spectral region of wave length which induced melanosome aggregation depended on the light intensity but was limited to the visible spectrum. At low light intensity (1.59 μW/cm2, Δλ = 5 nm), the aggregation response occurred in the spectral region between 400 and 600 nm and the maximum response was observed at 500 nm. This range is very close to the absorption spectrum of rhodopsin in the visual rod cell. Hypodermic injection of cGMP into isolated tail-fin induced a marked melanin-dispersion in spite of light-stimuli. When the tail-fin was treated with isobutylmethylxanthine (IBMX; phosophodiesterase inhibitor) in darkness and then was re-exposed to light, the aggregation response was inhibited. The photo-sensitive melanin aggregation was independent of a requirement for Ca2+ ions but melanosome dispersion in darkness was Ca2+-dependent. K+-rich Hanks' solution, ouabain (inhibitor of Na+-K+-ATPase) or nonactin (cation ionophore), which induced a change of the membrane potential of melanophores, inhibited the aggregation response when the melanophores were re-exposed to light after a period in darkness. These results suggest that the molecular mechanism of photoreception in melanophores of amphibian tadpoles is similar to that in visual cells. © 1996 Wiley-Liss, Inc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.