Abstract

AbstractThe induction of electrohydrodynamic instabilities in nematic liquid crystals through light illumination are reported. For this purpose, a photochromic spiropyran is added to the liquid crystal mixture. When an electrical field is applied in the absence of UV light, the homeotropic liquid crystal reorients perpendicular to the electrical field driven by its negative dielectric anisotropy. Upon exposure to UV light, the nonionic spiropyran isomerizes to the zwitterionic merocyanine form inducing electrohydrodynamic instabilities which turns the cell from transparent into highly scattering. The reverse isomerization to closed‐ring spiropyran form occurs thermally or under visible light, which stops the electrohydrodynamic instabilities and the cell becomes transparent again. It is demonstrated that the photoionic electrohydrodynamic instabilities can be used for light regulation. Local exposure, either to drive the electrohydrodynamics or to remove them enables the formation of colored images.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.