Abstract

Cyclodextrins (CDs) are important molecular hosts for hydrophobic guests in water and extensively employed in the pharmaceutical, food and cosmetic industries to encapsulate drugs, flavours and aromas. Compared with α- and β-CD, the wide-scale use of γ-CD is currently limited due to costly production processes. We show how the yield of γ-CD in the enzymatic synthesis of CDs can be increased 5-fold by adding a tetra-ortho-isopropoxy-substituted azobenzene template irradiated at 625 nm (to obtain the cis-(Z)-isomer) to direct the synthesis. Following the enzymatic reaction, the template can then be readily recovered from the product mixture for use in subsequent reaction cycles. Heating induces thermal cis-(Z) to trans-(E) relaxation and consequent dissociation from γ-CD whereupon the template can then be precipitated by acidification. For this study we designed and synthesised a set of three water-soluble azobenzene templates with different ortho-substituents and characterised their photoswitching behaviour using UV/vis and NMR spectroscopy. The templates were tested in cyclodextrin glucanotransferase-mediated dynamic combinatorial libraries (DCLs) of cyclodextrins while irradiating at different wavelengths to control the cis/trans ratios. To rationalise the behaviour of the DCLs, NMR titrations were carried out to investigate the binding interactions between α-, β- and γ-CD and the cis and trans isomers of each template.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.