Abstract
Laguerre-Gaussian (LG) beams with vortex phase possess a handedness, which would produce chiroptical interactions with chiral matter and may be used to probe structural chirality of matter. In this paper, we numerically investigate the light scattering of LG vortex beams by chiral particles. Using the vector potential method, the electric and magnetic field components of the incident LG vortex beams are derived. The method of moments (MoM) based on surface integral equations (SIEs) is applied to solve the scattering problems involving arbitrarily shaped chiral particles. The numerical results for the differential scattering cross sections (DSCSs) of several selected chiral particles illuminated by LG vortex beams are presented and analyzed. In particular, we show how the DSCSs depend on the chiral parameter of the particles and on the parameters describing the incident LG vortex beams, including the topological charge, the state of circular polarization, and the beam waist. This research may provide useful insights into the interaction of vortex beams with chiral particles and its further applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.