Abstract

We present a solution to the problem of light scattering by spherical particles, adapted for interpreting the signals of portable lidars for autonomous vehicles. The solution was obtained for typical wavelengths used in laser sensing tasks: 0.355, 0.532, 0.905, 0.940, 1.064, 1.55, 2.15, and 10.6 μm. The solution was obtained within the framework of the Mie scattering theory for water and ice. The inherent high-frequency oscillations in the backscattering direction are smoothed out by means of a moving average, which allows one to construct fast and efficient algorithms for particle size distributions observed in the atmosphere. The resulting solution is presented in the form of a data bank, which is available in the public domain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.