Abstract

As part of our program of lattice simulations of three flavor QCD with improved staggered quarks, we have calculated pseudoscalar meson masses and decay constants for a range of valence quark masses and sea quark masses on lattices with lattice spacings of about 0.125 fm and 0.09 fm. We fit the lattice data to forms computed with staggered chiral perturbation theory. Our results provide a sensitive test of the lattice simulations, and especially of the chiral behavior, including the effects of chiral logarithms. We find: f_\pi=129.5(0.9)(3.5)MeV, f_K=156.6(1.0)(3.6)MeV, and f_K/f_\pi=1.210(4)(13), where the errors are statistical and systematic. Following a recent paper by Marciano, our value of f_K/f_\pi implies |V_{us}|=0.2219(26). Further, we obtain m_u/m_d= 0.43(0)(1)(8), where the errors are from statistics, simulation systematics, and electromagnetic effects, respectively. The data can also be used to determine several of the constants of the low energy effective Lagrangian: in particular we find 2L_8-L_5=-0.2(1)(2) 10^{-3} at chiral scale m_\eta. This provides an alternative (though not independent) way of estimating m_u; 2L_8-L_5 is far outside the range that would allow m_u=0. Results for m_s^\msbar, \hat m^\msbar, and m_s/\hat m can be obtained from the same lattice data and chiral fits, and have been presented previously in joint work with the HPQCD and UKQCD collaborations. Using the perturbative mass renormalization reported in that work, we obtain m_u^\msbar=1.7(0)(1)(2)(2)MeV and m_d^\msbar=3.9(0)(1)(4)(2)MeV at scale 2 GeV, with errors from statistics, simulation, perturbation theory, and electromagnetic effects, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.