Abstract

We discuss the potential of light-nuclei measurements in heavy-ion collisions at intermediate energies for the search of the hypothetical QCD critical end-point. A previous proposal based on neutron density fluctuations has brought appealing experimental evidences of a maximum in the ratio of the number of tritons times protons, divided over deuterons square, mathcal{O}_{tpd}. However these results are difficult to reconcile with the state-of-the-art statistical thermal model predictions. Based on the idea that the QCD critical point can lead to a substantial attraction among nucleons, we propose new light-nuclei multiplicity ratios involving ^4He in which the maximum would be more noticeable. We argue that the experimental extraction is feasible by presenting these ratios formed from actual measurements of total and differential yields at low and high collision energies from FOPI and ALICE experiments, respectively. We also illustrate the possible behavior of these ratios at intermediate energies applying a semiclassical method based on flucton paths using the preliminary NA49 and STAR data for mathcal{O}_{tpd} as input.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.