Abstract
Precision probes of new physics are often interpreted through their indirect sensitivity to short-distance scales. In this proceedings contribution, we focus on the question of which precision observables, at current sensitivity levels, allow for an interpretation via either short-distance new physics or consistent models of long-distance new physics, weakly coupled to the Standard Model. The electroweak scale is chosen to set the dividing line between these scenarios. In particular, we find that inverse see-saw models of neutrino mass allow for light new physics interpretations of most precision leptonic observables, such as lepton universality, lepton flavor violation, but not for the electron EDM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.