Abstract

We present recent developments in the synthesis and in the functional study of non covalently bound porphyrin/carbon nanotube compounds. The issue of the chemical stability of non covalent compounds is tackled by means of micelle assisted chemistry. The non covalent functionalization allows to preserve the electronic integrity of the nanotubes that display bright NIR luminescence. In the same time, the coupling between the subunits is very strong and leads to efficient energy transfer and PL quenching of the chromophore. This transfer occurs on a subpicosecond time-scale and leads to a near 100% efficiency. It allows to uniformly excite a whole set of chiral species with a single wavelength excitation. Insight into the transfer mechanism is gained by means of transient absorption spectroscopy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.