Abstract

This paper describes the photophysical and photoelectrochemical characterization of a light harvesting polychromophore array featuring a polyfluorene backbone with covalently attached Ru(II) polypyridyl complexes (PF-Ru-A), adsorbed on the surface of mesostructured TiO2 (PF-Ru-A//TiO2). The surface adsorbed polymer is characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, providing evidence for the morphology of the surface adsorbed polymer and the mode of binding. Photoexcitation of the Ru(II) complexes bound to the metal oxide surface (proximal) results in electron injection into the conduction band of TiO2, which is then followed by ultrafast hole transfer to the polymer to form oxidized polyfluorene (PF+). More interestingly, chromophores that are not directly bound to the TiO2 interface (distal) that are excited participate in site-to-site energy transfer processes that transport...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.