Abstract
In this paper, we propose a convolutional neural network based on epipolar geometry and image segmentation for light-field depth estimation. Epipolar geometry is utilized to estimate the initial disparity map. Multi-orientation epipolar images are selected as input data, and the convolutional blocks are adopted based on the disparity of different-direction epipolar images. Image segmentation is used to obtain the edge information of the central sub-aperture image. By concatenating the output of the two parts, an accurate depth map could be generated with fast speed. Our method achieves a high rank on most quality assessment metrics in the HCI 4D Light Field Benchmark and also shows effectiveness in estimating accurate depth on real-world light-field images.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.