Abstract

We report light-induced reactions in a two-chromophore system capable of sequence-independent λ-orthogonal reactivity relying solely on the choice of wavelength and solvent. In a solution of water and acetonitrile, LED irradiation at λmax =285 nm leads to full conversion of 2,5-diphenyltetrazoles with N-ethylmaleimide to the pyrazoline ligation products. Simultaneously present o-methylbenzaldehyde thioethers are retained. Conversely, LED irradiation at λmax =382 nm is used to induce ligation of the o-methylbenzaldehydes in acetonitrile with N-ethylmaleimide via o-quinodimethanes, while 2,5-diphenyltetrazoles also present are retained. This unprecedented photochemical selectivity is achieved through control of the number and wavelength of incident photons as well as favorable optical properties and quantum yields of the reactants in their environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.