Abstract

The measurement of the production of deuterons, tritons and He3 and their antiparticles in Pb-Pb collisions at sNN=5.02TeV is presented in this article. The measurements are carried out at midrapidity (|y|< 0.5) as a function of collision centrality using the ALICE detector. The pT-integrated yields, the coalescence parameters and the ratios to protons and antiprotons are reported and compared with nucleosynthesis models. The comparison of these results in different collision systems at different center-of-mass collision energies reveals a suppression of nucleus production in small systems. In the Statistical Hadronisation Model framework, this can be explained by a small correlation volume where the baryon number is conserved, as already shown in previous fluctuation analyses. However, a different size of the correlation volume is required to describe the proton yields in the same data sets. The coalescence model can describe this suppression by the fact that the wave functions of the nuclei are large and the fireball size starts to become comparable and even much smaller than the actual nucleus at low multiplicities.Received 10 February 2023Accepted 16 May 2023DOI:https://doi.org/10.1103/PhysRevC.107.064904Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.©2023 CERN, for the ALICE CollaborationPhysics Subject Headings (PhySH)Research AreasParticle & resonance productionParticle correlations & fluctuationsRelativistic heavy-ion collisionsPropertiesA ≤ 5Accelerators & BeamsNuclear Physics

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.