Abstract
Upon exchanging long chain alkylamine ligands with a carbazole terminated fatty acid as 6-(N-carbazolyl)-hexanoic acid (C6) and 11-(N-carbazolyl) undecanoic acid (C11), efficient photoluminescence (PL) of CdSe/ZnS colloidal quantum dots (QDs) was observed upon excitation in the absorption band of the carbazole moiety at 330 nm. This effect, which occurred both in solution and in a poly(N-vinylcarbazole) (PVK) matrix doped with the QDs, is attributed to sensitization of the QDs by PVK and the ligands. More efficient energy transfer was observed in solution for the shorter ligand (C6) capped QDs, due to a shorter average distance between the donor (carbazole) and the acceptor (QD). The binding of C6 and C11 to the QDs was confirmed by 1H solution nuclear magnetic resonance, which showed line broadening of the carbazole signal due to a decrease of the mobility of the carbazoles upon binding to the QDs compared with the sharp lines observed for the free molecules in solution. In doped PVK films, the significant enhancement of the energy transfer to the QD core could also be related to a better miscibility between the QDs and the PVK as confirmed by optical transmission and confocal microscopy images. In contrast to the experiment in solution, the overall energy transfer in the doped films was found more efficient for QDs capped with C11. To study in more detail the energy transfer between the carbazole moieties and the QDs, time-resolved fluorescence measurements were performed for solutions of C6 and C11, capped QDs and PVK films doped with the QDs. In contrast to the large enhancement of the QD emission indicated by steady-state PL spectra, the latter experiments suggested only a relatively low efficiency (19.6% and 10.8%) for singlet transfer from the carbazole ligands to the QDs. This suggests that the enhancement of the QD emission must be largely due to triplet transfer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.