Abstract

The use of nanoparticles in biomedicine critically depends on their surface chemistry. For metal nanoparticles, a common way to tune this surface chemistry is through mass action ligand exchange, where ligand exchange can be used to expand the functionality of the resulting nanoparticle conjugates. Specifically, the quantity, identity, and arrangement of the molecules in the resulting ligand shell each can be tuned significantly. Here, we describe methods to exchange and quantify thiolated and non-thiolated ligands on gold nanoparticle surfaces. Importantly, these strategies allow the quantification of multiple ligand types within a single ligand shell, simultaneously providing ligand composition and ligand density information. These results are crucial for both designing and assigning structure-function relationships in bio-functionalized nanoparticles, and these methods can be applied to a broad range of nanoparticle cores and ligand types including peptides, small molecule drugs, and oligonucleotides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.