Abstract

We report the synthesis, structural diversity, and chemical behavior of a family of manganese telluride molecular clusters whose charge-neutral cores are passivated by two-electron donor ligands. We describe three different core structures: a cubane-type Mn4Te4, a prismane Mn6Te6, and a dicubane Mn8Te8. We use various trialkylphosphines and N-heterocyclic carbenes (NHCs) as surface ligands and demonstrate that the formation of the different cluster core structures is controlled by the choice of ligand: bulky ligands such as P(i)Pr3, PCy3, or (i)Pr2NHC ((i)Pr2NHC = 1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene) form the cubane-type core, while the smaller PMe3 produces the prismane core. The intermediate-sized PEt3 produces both cubane and prismane species. These manganese telluride molecular clusters are labile, and the capping phosphines can be replaced by stronger ligands, while the internal core structure of the cluster remains intact. The interplay of structural diversity and ligand versatility and lability makes these clusters potentially useful building blocks for the assembly of larger aggregates and extended structures. We demonstrate the simplest prototype of these solid-forming reactions: the direct coupling of two Mn4Te4((i)Pr2NHC)4 units to form the dicubane Mn8Te8((i)Pr2NHC)6. We also postulate the prismatic Mn6Te6 as the common ancestor of both Chevrel-type M6E8 and octanuclear rhombododecahedral M8E6 molecular clusters (M = transition metal and E = chalcogen), and we discuss the core structure of our molecular clusters as recognizable building units for the zinc blende and the hypothetical wurtzite lattices of MnTe.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.