Abstract
Ligand-based drug design methods are thought to require large experimental datasets to become useful for virtual screening. In this work, we propose a computational strategy to design novel inhibitors of coronavirus main protease, Mpro. The pipeline integrates publicly available screening and binding affinity data in a two-stage machine-learning model using the recent MACAW embeddings. Once trained, the model can be deployed to rapidly screen large libraries of molecules in silico. Several hundred thousand compounds were virtually screened and 10 of them were selected for experimental testing. From these 10 compounds, 8 showed a clear inhibitory effect on recombinant Mpro, with half-maximal inhibitory concentration values (IC50) in the range 0.18–18.82 μM. Cellular assays were also conducted to evaluate cytotoxic, haemolytic, and antiviral properties. A promising lead compound against coronavirus Mpro was identified with dose-dependent inhibition of virus infectivity and minimal toxicity on human MRC-5 cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Enzyme Inhibition and Medicinal Chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.