Abstract

A mononuclear Mn(I) pincer complex [Mn(Ph2 PCH2 SiMe2 )2 NH(CO)2 Br] was disclosed to catalyze the pinacolborane (HBpin)-based CO2 hydroboration reaction. Density functional calculations were conducted to reveal the reaction mechanism. The calculations showed that the reaction mechanism could be divided into four stages: (1) the addition of HBpin to the unsaturated catalyst C1; (2) the reduction of CO2 to HCOOBpin; (3) the reduction of HCOOBpin to HCHO; (4) the reduction of HCHO to CH3 OBpin. The activation of HBpin is the ligand-assisted addition of HBpin to the unsaturated Mn(I)-N complex C1 generated by the elimination of HBr from the Mn(I) pincer catalyst. The sequential substrate reductions share a common mechanism, and every hydroboration commences with the nucleophilic attack of the Mn(I)-H to the electron-deficient carbon centers. The hydride transfer from Mn(I) to HCOOBpin was found to be the rate-limiting step for the whole catalytic reaction, with a total barrier of 27.0 kcal/mol, which fits well with the experimental observations at 90 °C. The reactivity trend of CO2 , HCOOBpin, HCHO, and CH3 OBpin was analyzed through both thermodynamic and kinetic analysis, in the following order, namely HCHO>CO2 >HCOOBpin≫CH3 OBpin. Importantly, the very high barrier for the reduction of CH3 OBpin to form CH4 reconciles with the fact that methane was not observed in this catalytic reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.