Abstract

Homodyne measurement is a corner-stone method of quantum optics that measures the quadratures of light—the quantum optical analog of the canonical position and momentum. Standard homodyne, however, suffers from a severe bandwidth limitation: while the bandwidth of optical states can span many THz, standard homodyne is inherently limited to the electronically accessible MHz-to-GHz range, leaving a dramatic gap between relevant optical phenomena and the measurement capability. We demonstrate a fully parallel optical homodyne measurement across an arbitrary optical bandwidth, effectively lifting this bandwidth limitation completely. Using optical parametric amplification, which amplifies one quadrature while attenuating the other, we measure quadrature squeezing of 1.7 dB simultaneously across 55 THz, using the pump as the only local oscillator. As opposed to standard homodyne, our measurement is robust to detection inefficiency, and was obtained with >50% detection loss. Broadband parametric homodyne opens a wide window for parallel processing of quantum information.

Highlights

  • Homodyne measurement is a corner-stone method of quantum optics that measures the quadratures of light—the quantum optical analog of the canonical position and momentum

  • The basic concept of our method for broadband homodyne detection is illustrated in Fig. 1, showing in Fig. 1a the standard homodyne method and in Fig. 1b the parametric homodyne detection as realized by a broadband parametric amplifier acting on the quadratures of the light

  • In our experiment above, a single LO is sufficient to simultaneously extract a specific quadrature across the entire optical bandwidth, just as a single pump laser can simultaneously generate the entire bandwidth of quadrature squeezed mode pairs

Read more

Summary

Introduction

Homodyne measurement is a corner-stone method of quantum optics that measures the quadratures of light—the quantum optical analog of the canonical position and momentum. One example is one-way quantum computation with a quantum frequency comb[13,18], which forms the most promising realization of scalable quantum information to date This approach exploits the large bandwidth of frequency mode pairs from a single parametric oscillator (two-mode squeezed vacuum) as a set of quantum modes (Q-modes), where coupling among near Q-modes demonstrated the largest entangled cluster states to date along with a complete set of quantum gate operations[13]. Assuming a squeezing bandwidth of 10–100 THz, the number of simultaneous Q-modes can exceed 105 The limitation of this approach to quantum computation is the bandwidth of the measurement, where each Q-mode requires a separate homodyne detection using a precise pair of phase-correlated LOs. A broad bandwidth of Q-modes requires a dense set of correlated LOs and multiple homodyne measurements, quickly multiplying the complexity to impracticality. We simultaneously measure the entire bandwidth of a broadband two-mode squeezed vacuum with only one LO—the pump field that generates the squeezed light to begin with

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.