Abstract
Emulsion stability simulations are used to estimate the coalescence time of one drop of hexadecane pressed by buoyancy against a planar water/hexadecane interface. In the present simulations, the homophase is represented by a big drop of oil at least 500 times larger than the approaching drop (1-10 microm). Both deformable and nondeformable drops are considered along with six different diffusion tensors. In each case, van der Waals, electrostatic, steric, and buoyancy forces are taken into account. The coalescence times are estimated as the average of 1000 random walks. It is found that the repulsive potential barrier has a significant influence in the results. The experimental data can only be reproduced assuming negligible repulsive barriers, as well as nondeformable drops that move with a combination of Stokes and Taylor tensors as they approach the interface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.