Abstract

To follow the status of cones over the life of the P23H-3 transgenic rat, while the rod population is depleted. P23H-3 heterozygous and Sprague-Dawley (SD) control rats were raised in dim, cyclic light from postnatal day (P)10 to P540. Retinas were examined for cone density, cone outer segment (OS) length, cone axon and soma morphology, and the amplitude of rod and cone components of the electroretinogram (ERG) were determined. In the P23H-3 retina, cone density followed a developmental pattern, increasing from P10 until P20, declining during early adult life (to P150), then steadying at levels found in the SD retina until P540. Cone OSs elongated to P30 and then slowly shortened during late adulthood; at P350 and P540, cone OSs were significantly shorter than in the background SD strain. Cone axons shortened slowly throughout adult life as the outer nuclear layer thinned. The rod a-wave declined steadily in the P23H-3 retina from P10, falling below amplitudes seen in the SD strain from early life. By contrast, the cone b-wave maintained amplitude at SD levels, until P380. Despite the ongoing loss of rod function and numbers, cone numbers in the P23H-3 retina were maintained at levels found in the SD rat to the oldest age examined, and cone function and OS morphology were maintained for approximately 1 year, indicating a long period of cone independence. The long period of cone survival creates an opportunity to induce self-repair, if the stress causing their dysfunction can be reduced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.