Abstract

The life extension program of aircraft is taken up whenever aircraft’s intended life reaches close to its DSG (Design Service Goal). The Extended Service Goal (ESG) of an aircraft, in general, and structural repairs, in particular, is arrived at on the basis of F&DT (Fatigue & Damage Tolerance) analysis. Life extension program of aircraft consists of assessment of remaining life of all parts of the aircrafts including structural, mechanical, and electrical and avionics equipment and structural repairs. For life extension of stringer repair, as an example, it is required to re-assess the fatigue life of stringer in the presence of coupling under modified load spectrum. This is achieved by assessing the fatigue life of Web and Outer Flange (OF) part of stringers separately as per F&DT justification philosophy. Assessment of the fatigue life requires determination of stress concentration factor (Kt) for different combination of width, pitch, stringer thickness, coupling thickness and pad-up thickness of all stringer profiles available in different sections of fuselage. Determination of stress concentration factor for Web and Outer Flange of stringer profile covering entire ranges involves substantial number of Finite Element (FE) analysis. In order to optimise the number of FE runs, stress concentration factor is determined under worst repair factors combination (max. plate width; max. thickness; max. pitch; min. rivet dia.; and min. No. of rivets) resulting in conservative value. A parametric study of Web and Outer Flange data across stringer profiles were carried out and proven statistical techniques were used to find the optimal equation to predict stress concentration factor. This in turn reduced number of FE runs substantially for a given range of width, pitch, stringer thickness and so on. The use of optimal equation obtained through regression analysis is able to predict Kt within reasonable accuracy for a given range of inputs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.