Abstract

The study aimed to evaluate the environmental impacts of used lubricating oil (ULO) recovery in the largest oil consumer country in Africa, Egypt. The main questions were: What are the impacts of the different waste management strategies for the recovery of used lubricating oil and which waste management strategy is more eco-friendly? Life cycle assessment (LCA) was employed to model the environmental impacts of the two waste management approaches for used lubricating oil recovery in Egypt: recycling by re-firing and recovery by co-firing. The model was applied to assess the impacts of one of the largest ULO recovery units in the Middle East and North Africa (MENA) region and the only operating unit in Egypt. The following impact categories were included: global warming potential (GWP), acidification potential (AP), eutrophication potential (EP), carcinogens potential (CP), ecotoxicity potential (ETP), respiratory inorganic formation potential (RIFP), respiratory organic formation potential (ROFP), radiation potential (RP), ozone layer depletion (OLD), mineral depletion (MD), land use (LU) and fossil fuel depletion (FFD). Results indicated that recycling by re-refining strategy is more environment-friendly. De-asphalting, de-aromatization and de-waxing processes are the main processes that affect the environmental impacts of lubricating oil production in both strategies, due to the use of hazard materials and toxic solvents in these processes. Fuel gas and fuel oil used as a fuel in the refinery and power units are the main contributors affecting the environmental impacts in case of recycling by re-refining strategy. The highest impacts were detected on FFD, followed by RIFP, GWP, AP, EP, ETP and CP in both strategies; no impacts were detected on RP, OLD and MD. It can be concluded that recycling by re-refining of ULO is the more eco-friendly approach. This strategy is more energy conservative, saves a diminishing fossil fuel resource and reduces burdens on the environment. ULO containing high percentages of additive remnants such as viscosity index improvers and pour point depressants which represents a valuable resource and its proper management should be given the most attention.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.