Abstract

We consider the Lidstone–Euler interpolation problem and the associated Lidstone–Euler boundary value problem, in both theoretical and computational aspects. After a theorem of existence and uniqueness of the solution to the Lidstone–Euler boundary value problem, we present a numerical method for solving it. This method uses the extrapolated Bernstein polynomials and produces an approximating convergent polynomial sequence. Particularly, we consider the fourth-order case, arising in various physical models. Finally, we present some numerical examples and we compare the proposed method with a modified decomposition method for a tenth-order problem. The numerical results confirm the theoretical and computational ones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.