Abstract

Common local anaesthetics such as lidocaine are administered by the hypodermic parenteral route but it causes pain or anxiety to patients. Alternatively, an ointment formulation may be applied which involves a slow drug diffusion process. In addressing these two issues, this paper aims to understand the significance of the 'poke and patch' microneedle (MN) treatment on skin in conjunction to the lidocaine permeation, and in particular, the vertical (depth averaged) and horizontal (e.g. lateral) permeation profiles of the drug in the skin. The instantaneous pharmacokinetics of lidocaine in skin was determined by a skin denaturation technique coupled with Franz diffusion cell measurements of the drug pharmacokinetics. All pharmacokinetic profiles were performed periodically on porcine skin. Three MN insertion forces of 3.9, 7.9 and 15.7N were applied on the MN to pierce the skin. For the smaller force (3.9N), post MN-treated skin seems to provide an 'optimum' percutaneous delivery rate. A 10.2-fold increase in lidocaine permeation was observed for a MN insertion force of 3.9N at 0.25h and similarly, a 5.4-fold increase in permeation occurred at 0.5h compared to passive diffusional delivery. It is shown that lidocaine permeates horizontally beyond the area of the MN-treated skin for the smaller MN insertion forces, namely, 3.9 and 7.9N from 0.25 to 0.75h, respectively. The lateral diffusion/permeation of lidocaine for larger MN-treated force (namely, 15.7N in this work) seems to be insignificant at all recorded timings. The MN insertion force of 15.7N resulted in lidocaine concentrations slightly greater than control (passive diffusion) but significantly less than 3.9 and 7.9N impact force treatments on skin. We believe this likelihood is due to the skin compression effect that inhibits diffusion until the skin had time to relax at which point lidocaine levels increase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.