Abstract

Lidocaine is a commonly used drug to alleviate neuropathic pain (NP). This work aims to investigate the mechanism of lidocaine in alleviating NP. Chronic constriction injury (CCI) rats were established by surgery to induce NP. We observed the mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) of rats. Immunofluorescence staining was performed to determine the LC3/glial fibrillary acidic protein (GFAP)-positive cells. Rat astrocytes were treated with lipopolysaccharide (LPS) to induce CCI, and then treated with lidocaine or 3-MA (autophagy inhibitor). CCK-8 was performed to detect cell proliferation. Western blot and enzyme-linked immunosorbent assay were performed to detect the level of protein and inflammatory factor. CCI rats exhibited a decrease of MWT and TWL, which was effectively abolished by lidocaine. Lidocaine enhanced the number of LC3/GFAP-positive cells in CCI rats. Moreover, lidocaine inhibited the expression of GFAP and p62, and enhanced LC3-II/LC3-I expression in the LPS-treated astrocytes. Lidocaine inhibited the level of TNF-α and IL-1β in the LPS-treated astrocytes. The influence conferred by lidocaine was effectively abolished by 3-MA. In conclusion, our work demonstrates that lidocaine activates autophagy of astrocytes and ameliorates CCI-induced NP. Thus, our study provides a further experimental basis for the mechanism of lidocaine to alleviate NP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.