Abstract

BackgroundLiddle syndrome is a monogenic disease with autosomal dominant inheritance. Basic characteristics of this disease are hypertension, reduced concentration of aldosterone and renin activity, as well as increased excretion of potassium leading to low level of potassium in serum and metabolic alkalosis. The cause of Liddle syndrome is missense or frameshift mutations in SCNN1A, SCNN1B, or SCNN1G genes that encode epithelial sodium channel subunits.Case presentationWe describe a family with Liddle syndrome from Russia. 15-year-old proband has arterial hypertension, hypokalemia, hyporeninemia, metabolic alkalosis, but aldosterone level is within the normal range. At 12 years of age, arterial hypertension was noticed for the first time. We identified novel frameshift mutation c.1769delG (p.Gly590Alafs) in SCNN1G, which encodes the γ subunit of ENaC in vertebrates. The father and younger sister also harbor this heterozygous deletion. Treatment with amiloride of proband and his sister did not normalize the blood pressure, but normalized level of plasma renin activity.ConclusionsOur results expand the mutational spectrum of Liddle syndrome and provide further proof that the conserved PY motif is crucial to control of ENaC activity. Genetic analysis has implications for the management of hypertension, specific treatment with amiloride and counselling in families with Liddle syndrome.

Highlights

  • ConclusionsOur results expand the mutational spectrum of Liddle syndrome and provide further proof that the conserved PY motif is crucial to control of Epithelial sodium channel (ENaC) activity

  • Liddle syndrome is a monogenic disease with autosomal dominant inheritance

  • Our results expand the mutational spectrum of Liddle syndrome and provide further proof that the conserved PY motif is crucial to control of Epithelial sodium channel (ENaC) activity

Read more

Summary

Conclusions

Our results expand the mutational spectrum of Liddle syndrome and provide further proof that the conserved PY motif is crucial to control of ENaC activity. Genetic analysis has implications for the management of hypertension, specific treatment with amiloride and counselling in families with Liddle syndrome

Background
Discussion and conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.