Abstract
Abstract Off-road autonomous vehicles face a unique set of challenges compared to those designed for road use. Lane markings and road signs are unavailable, with soft soils, mud, steep slopes, and vegetation taking their place. Autonomy struggles with shrubbery, saplings, and tall grasses. It can be difficult to determine if this vegetation or what it obscures is drivable. Modeling and simulation of autonomy sensors and the environments they interact with enhances and accelerates autonomy development, but analytical models found in the literature and our in-house simulation software did not agree on how well lidar penetrates grass-like vegetation. To test our simulator against the analytical model, we constructed vegetation mock-ups that conform to the assumptions of the analytical model and measured the pass-through rate on calibrated lidar targets. Vegetation density, lidar-to-vegetation distance, and target reflectivity were varied. A random effects model was used to address the dependence introduced by repeated measures, which increased accuracy while reducing time and cost. Stem density impacted total beam return count and grass patch pass-through rate. Target reflectivity results varied by lidar unit, and three-way factor interaction was significant. Results suggest benchmarking experiments could be useful in autonomy development. Permission to publish was granted by Director, Geotechnical & Structures Laboratory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.