Abstract

ABSTRACTA rigid block model is proposed for collapse mechanism analysis of three-dimensional historic masonry structures subjected to point live loads, seismic-induced lateral loads and settlements. The model is made of polyhedral rigid blocks interacting at no-tension, frictional contact interfaces and can be used to represent complex assemblages and bond patterns. The formulation and the solution procedure of the underlying limit equilibrium analysis problem were implemented in LiABlock_3D, a MATLAB based tool with Graphical User Interface (GUI). The software was designed to import the geometric model from commercial Computer Aided Design (CAD) tools, thus allowing high flexibility of structural configurations and masonry patterns. The graphical interface is also used to define material properties as well as boundary and loading conditions. Numerical and experimental case studies from the literature were analyzed to show the ability of the model developed in predicting the collapse behavior of a variety of structural typologies. Those include arches, vaults, and domes under vertical and horizontal live loads and spreading supports. A two-story masonry building with a barrel vault at first level is also analyzed under variable lateral loads and support movement. Potentialities and limitations of the proposed formulation and tool are discussed on the basis of the results obtained and also in terms of computational efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.