Abstract

Inorganic superhalogens are commonly used as anionic counterparts in Li-ion batteries. In an endeavour to prepare better electrolytes, we have modelled the anionic part with different organic heterocyclic-based superhalogens. First principles calculations on those organic superhalogens reveal that the Li-binding energy is at par with that of the Li-salt of a common electrolyte. Out of five different halogen free organic heterocycles, Li[C3BN2(NO2)4] and Li[C2BNO(NO2)3] are found to be mostly suitable as electrolytes in Li-ion batteries. Molecular dynamics simulation studies on C2BNO(NO2)3-, C3BN2(NO2)4-, Li[C2BNO(NO2)3] and Li[C3BN2(NO2)4] also reveal that the structures are dynamically stable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.